Tight degree bounds for pseudo-triangulations of points

نویسندگان

  • Lutz Kettner
  • David G. Kirkpatrick
  • Bettina Speckmann
چکیده

We show that every set of n points in general position has a minimum pseudo-triangulation whose maximum vertex degree is five. In addition, we demonstrate that every point set in general position has a minimum pseudo-triangulation whose maximum face degree is four (i.e. each interior face of this pseudo-triangulation has at most four vertices). Both degree bounds are tight. Minimum pseudo-triangulations realizing these bounds (individually but not jointly) can be constructed in O(n log n) time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Bounds for Constrained Pseudo-Triangulations

We introduce the concept of a constrained pointed pseudo-triangulation TG of a point set S with respect to a pointed planar straight line graph G = (S,E). For the case that G forms a simple polygon P with vertex set S we give tight bounds on the vertex degree of TG.

متن کامل

On numbers of pseudo-triangulations

We study the maximum numbers of pseudo-triangulations and pointed pseudotriangulations that can be embedded over a specific set of points in the plane or contained in a specific triangulation. We derive the bounds O(5.45 ) and Ω(2.41 ) for the maximum number of pointed pseudo-triangulations that can be contained in a specific triangulation over a set of N points. For the number of all pseudo-tr...

متن کامل

Flip Graphs of Degree-Bounded (Pseudo-)Triangulations⋆

We study flip graphs of (pseudo-)triangulations whose maximum vertex degree is bounded by a constant k. In particular, we consider (pseudo-)triangulations of sets of n points in convex position in the plane and prove that their flip graph is connected if and only if k > 6; the diameter of the flip graph is O(n). We also show that for general point sets flip graphs of minimum pseudo-triangulatio...

متن کامل

An Improved Lower Bound on the Number of Triangulations

Upper and lower bounds for the number of geometric graphs of specific types on a given set of points in the plane have been intensively studied in recent years. For most classes of geometric graphs it is now known that point sets in convex position minimize their number. However, it is still unclear which point sets minimize the number of geometric triangulations; the so-called double circles a...

متن کامل

Allocating Vertex π - Guards in Simple Polygons via Pseudo - Triangulations ∗

We use the concept of pointed pseudo-triangulations to establish new upper and lower bounds on a well known problem from the area of art galleries: What is the worst case optimal number of vertex π -guards that collectively monitor a simple polygon with n vertices? Our results are as follows: 1. Any simple polygon with n vertices can be monitored by at most n/2 general vertex π -guards. This bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001